FUNDACIÓN CARDIOINFANTIL Instituto de Cardiología

REUNIÓN INTERINGTIIOIONAI

Jorge Humberto Aristizábal Maya Santiago Vallejo Puerta Juan Dahin I 0 Il Isaza

CASO \#1

- Hombre
- 51 años
- Conductor
- Lateralidad zurdo

ENFERMEDAD ACTUAL:

- Memoria

ANTECEDENTES
 -No refiere

- Marcha en miembro inferior izquierdo
- Sensibilidad en hemicuerpo izquierdo
- Cefalea izquierda pulsátil

CASO \#1 - Examen físico

CASO \#1

CASO \#1

CASO \#1

CASO \#1

CASO \#1

CASO \#1 - Abordajes

CASO \#1 - Anatomía

E Internal carotid a. Internal cerebral v. Medial posterior choroidal a.

CASO \#1 - Cirugía

CASO \#1 - POP inmediato

CASO \#2

- Hombre
- 39 años
- Lateralidad diestro

ENFERMEDAD ACTUAL:

- 2014
- Cefalea crónica progresiva
- Sd hipertesión intracraneal

CASO \#2

- Biopsia 2014
\checkmark Convulsión
\checkmark Hemiparesia derecha \checkmark Afasia motora
- Radioterapia
- Enero 2019-ISO

CASO \#2 - Abordaje

- 26/06/2019

CASO \#2 - POP inmediato

REVISIÓN DE TEMA INTERINSTITUCIONAL NEUROCIRUGÍA

JUAN PABLO LEAL ISAZA. RESIDENTE SEGUNDO AÑO PIERRE-YVES FONSECA MAZEAU. RESIDENTE PRIMER AÑO

COORDINACION:
DR. JORGE HUMBERTO ARISTIZABAL MAYA DR. SANTIAGO VALLEJO PUERTA

LESIONES INTRAVENTRICULARES

¿DE DÓNDE VIENEN?

LÍMITES ANATÓMICOS

Posterior mesencephalic vein
Hippocampal and inferior ventricular veins

¿QUÉ TIPO DE LESIONES ENCONTRAMOS?

LESIONES VASCULARES

MALFORMACIONES

MAV

QUÍSTICAS

QUISTES COLOIDES

QUISTE EPIDERMOIDE

QUISTES PLEXOS COROIDEOS

INFECCIOSAS

ABSCESOS

NEUROCISTICERCOSI S

NEOPLASIAS SÓLIDAS

*GLIALES *

PAPILOMA PLEXOS COROIDEOS
*MEDULOBLASTOMA *
*NEUROCITOMA *

HISTOLOGY n
Colloid cyst 19
Craniopharyngioma 16
Pilocytic astrocytoma 15
Pineocytoma (WHO grade I) 9
Cavernous malformation 8
Medulloblastoma 8
Metastatic tumor 7
Glioblastoma 6
Pineal cyst 6
Subependymoma 5
Fibrillary astrocytoma 4
Anaplastic ependymoma 3
Meningioma 4
Central neurocytoma 3
Pineocytoma (WHO grade II) 3
Anaplastic astrocytoma 2
Dermoid cyst 2
Gliosis 2
Hemangioblastoma 2
Lymphoma 2
Neurenteric cyst 2
Pineoblastoma 2
Pituitary adenoma 2
Chordoid glioma 1
Gliosarcoma 1
Granular cell tumor 1
Plexus papilloma 1
Anaplastic plexus papilloma 1
Germinoma 1
Teratoma1
¿CÓMO ABORDAR Y ORIENTARNOS EN LA LESIONES INTRAVENTRICULARES PASO A PASO?

DÉFICIT DE PARES BAJOS

```
CUARTO VENTRÍCULO
```

HIPERTENSIÓN INTRACRANEANA

ENDOCRINOLÓGICAS / DÉFICIT VISUAL

PARÁLISIS MIRADA VERTICAL
NISTAGMUS CONVERGENCIA RETRACCIÓN PALPEBRAL ALTERACIÓN MOVIMIENTOS OCULARES CONJUGADOS

PAPILEDEMA
DISOCIACIÓN PUPILAR
FOTOMOTORA

LESIONES QUE
GENEREN
HIDROCEFALIA

COMPRESIÓN DEL TECTUM
 MESCENCEFÁLICO

COMPRESIÓN COLícULOS SUPERIORES

TUMORES DE LA REGION PINEAL

TUMORES DE EL CUARTO VENTRÍCULO

FIEBRE

INICIO SÚBITO

HEMIPARESIA/ALTERACIÓN DE LA MEMORIA

程

NIÑO

ADULTO

INFANTES Y ESCOLARES

MEDULOBLASTOMA

CRANEOFARINGIOMA

PAPILOMA DE PLEXOS CONOIDEOS

ADULTO

SUBEPENDIMOMA
EPENDIMOMA
MENINGIOMA

* CRANEOFARINGIOMAS *

GERMINOMAS

VASCULARES

HOMBRES

TUMORES DE LA REGIÓN PINEAL 3:1

SUBEPENDIMOMAS 2.3:1

EPENDIMOMAS
2.5:1.5

GLIOMAS ALTO GRADO
1.3:1

QUISTE COLOIDE 1.5:1

CRANEOFARINGIOMA IGUAL

NEUROCITOMA $\underline{\text { IGUAL }}$

MUJERES

MENINGIOMA 3:1

MALFORMACIONES ARTERIOVENOSAS 2.5:1.5
CAVERNOMAS 2.6:2.5
QUISTE DERMOIDE 1.2:1

```
PAPILOMA PLEXO
    COROIDEO
        53%-47%
            1.5:1
```


vENTRÍCULOS

 LATERALES

LOCALIZACIÓN
TERCER VENTRÍCULO

TERCER VENTRÍCULO

CUARTO VENTRÍCULO

EPENDIMOMAS

ASTROCITOMA PILOCITICO

MEDULOBLASTOMA

VENTRÍCULOS LATERALES

```
EPENDIMOMAS
    1.6% (T-
    ST)ADULTO
```

```
SUBEPENDIMOMAS
```

SUBEPENDIMOMAS
0.4%(T)-40%VL
0.4%(T)-40%VL
NEUROCITOMA
CENTRAL
0.1-0.4% (T)
80% I.V
50-60% CUERPO.V
PAPILOMA PLEXO
COROIDEOS
50% VL

```


METÁSTASIS \(6 \%\) TODAS

GLIOMAS BAJO GRADO
2.2 \%

GLIOMAS DE ALTO GRADO

MALFORMACIONES ARTERIOVENOSAS 1-3.5\%

MENINGIOMA
1-5\%


CARACTERÍSTICAS PROPIAS
IMAGENOLÓGICAS DE CADA TIPO DE LESIÓN
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Neoplasm} & \multicolumn{3}{|c|}{CT Characteristics} & \multicolumn{3}{|c|}{MR Imaging Characteristics \(\dagger\)} & \multirow[b]{2}{*}{Comment} \\
\hline & Density & Calcified & Enhancement & \(\mathrm{T}_{1}\) intensity & \(\mathrm{T}_{2}\) intensity & Enhancement & \\
\hline CPP & iso-hyper (3/4) & 25\% & +++ & hypo & iso-hyper & + & trigone in children; all ventricles dilated; may be locally invasive \\
\hline CPC & iso & 25\% & +++ & hypo & iso-hyper & + & trigone in children; craniospinal dissemination \\
\hline astrocytoma (low-grade) & iso & 15-20\% & + & hypo & hyper & + & pilocytic: cystic, mural nodule may enhance intensely \\
\hline SGCA & mixed (isohypo) & common & +++ & hypo-iso & iso-hyper & ++ & tuberous sclerosis; arise in region of FOM \\
\hline ependymoma & iso & (50\%) & ++ & hypo & hyper & ++ & supratentorial ependymomas arise in trigone, cystic; local recurrence \\
\hline meningioma & hyper & (20-25\%) & +++ & iso & iso & +++ & rare in children; cystic; can be multiple; NF-2 \\
\hline PNET & hyper & common & + & hypo & hyper & + to ++ & neonates and infants; highly malignant \\
\hline central neurocytoma & iso-hyper & yes & ++ & iso & iso-hyper & + to ++ & immunohistochemistry \\
\hline germinoma & hyper & uncommon & +++ & iso-hyper & iso-hypo & + & CSF \& serum tumor markers \\
\hline teratoma & mixed & yes & - & mixed & mixed & - & heterogeneous \& variable imaging characteristics \\
\hline craniopharyngioma & hyper & yes ( \(90 \%\) rim calcified) & +++ & hypo & hyper & +++ & cystic: adamantinomatous; children > adults; solid: papillary; adults \(>\) children \\
\hline colloid cyst & \[
\begin{aligned}
& \text { iso }(1 / 3) \\
& \text { hyper }(2 / 3)
\end{aligned}
\] & no & rim & hyper & hypo & rim & mixed MR signal based on cyst content \\
\hline
\end{tabular}



\title{
RESOLUCIÓN DE CASO CLínico
}

\section*{NEUROCITOMA CENTRAL}

\section*{Tumor neuroepitelial bien diferenciado con elementos neurociticos maduros}


IMÁGENES


TAC


RESONANCIA MAGNÉTICA CEREBRAL





\section*{DIAGNÓSTICO DIFERENCIAL IMAGENOLÓGICO}

Table 1
Differential diagnosis of similar intraventricular lesions
\begin{tabular}{|c|c|}
\hline Disease Entity & Radiologic Differentiation from CN \\
\hline Subependymal giant cell tumor & Almost exclusively associated with cortical tubers, avidly enhances compared with CN \\
\hline Subependymoma & Typically nonenhancing and hypovascular compared with hypervascular, intermediately enhancing CN. More common in fourth ventricle, older age preference \\
\hline Ependymoma & Uncommon in lateral ventricles. May also extend into periventricular white matter \\
\hline Choroid plexus papilloma (CPP) & Typically in children less than 5; when presenting in an adult CPP is more common in the fourth ventricle. Typically in trigone. "Frondlike" or "cauliflower" appearance of CPP compared with "soap bubble" of CN \\
\hline Metastatic disease & Appearance varies depending on primary; lung can appear quite similar to CN. Consider in patients with known primary. Larger lesions may invade parenchyma or have associated edema, unlike CN \\
\hline Meningioma & More common in trigone than frontal horn or body; more common in elderly. Often calcified, but not cystic. Increased homogenous enhancement compared with moderate heterogeneous enhancement of CN \\
\hline Oligodendroglioma & Challenging to differentiate radiographically, may have edema (edema absent in CN), advanced MRS techniques being developed may be helpful \\
\hline
\end{tabular}

\section*{PATOLOGÍA/INMUNOHISTOQUÍMICA}


ISLAS
NEUROPILAS

\begin{tabular}{|c|c|}
\hline \multirow{3}{*}{SINAPTOFISINA +} & Syn \\
\hline &  \\
\hline & \({ }^{3+D}\) \\
\hline & \begin{tabular}{c}
\(\substack{3+\mathrm{D} \\
3+\mathrm{D}}\) \\
\hline
\end{tabular} \\
\hline \multirow[t]{3}{*}{AG.NUCL.NEU +} & \begin{tabular}{|c}
\(\substack{3+\mathrm{D} \\
3+\mathrm{D}}\)
\end{tabular} \\
\hline & \(\underset{\substack{3+\mathrm{D} \\ 3+\mathrm{D}}}{ }\) \\
\hline & \begin{tabular}{|c|c|}
\(\substack{3+\mathrm{D} \\
3+\mathrm{D}}\)
\end{tabular} \\
\hline
\end{tabular}

SINAPSIS DENSA
NEUROSECRECIÓ N
\(\overline{\mathrm{KI}-67 \%}\)
\(<1\)
\(<1\)
2-4
\(1-2\)
1

\section*{KI67}

MAS RECURRENCIAS
```

>2%

```

MENOR SOBREVIDA
```

MENOR RESPUESTA A RADIOTERAPIA CONVENCIONAL

```


Figure 1. Comparison of MIB-1 labeling index of \(\leq 3 \%\) vs MIB-1 labeling index of \(>3 \%\) for local control (fraction free from recurrence) using the Kaplan-Meier analysis \({ }^{4}\) (local control rateltime in months). Five-year local control rates: MIB-1 index of \(>3\) (38\%) vs MIB-1 index of \(\leq 3\) (87\%), p < 0.0001.


Figure 2. Comparison of MIB-1 labeling index of \(\leq 3 \%\) vs MIB-1 labeling index of \(>3 \%\) for overall survival using the Kaplan-Meier analysis \({ }^{4}\) (survival rateltime in months). Five-year survival rates: MIB-1 index of \(>3\) (66\%) vs MIB-1 index of \(\leq 3\) (95\%), \(\mathrm{p}=0.0004\).

\section*{RADIOTERAPIA}

\section*{Table 2}

Conventional radiation treatment includes studies summary
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Study Authors, Year (PMID) & \begin{tabular}{l}
No. \\
Tumors/ \\
Subjects
\end{tabular} & cRT Protocol Description (Detail Reported in Study) & Median Dose, Gy (Range) & Tumor Change Last Follow-up & \begin{tabular}{l}
Median Follow-up \\
Time, mo (Range)
\end{tabular} & \begin{tabular}{l}
All-cause \\
Death \\
Fraction
\end{tabular} & Local Control Fraction \\
\hline Paek et al, 2008 (18566748) & 6/6 & Fractionated external beam Co-60 \(\gamma\)-ray 6 MV or 10 MV in 1.5-1.8 fractions, \(5 \mathrm{~d} / \mathrm{wk}\), margin of \(1.5-2.0 \mathrm{~cm}\) & 54 (50.4-55.8) & 4 reduced; 2 disappeared & 171 (128-229) & 33\% (2/6) & 100\% (6/6) \\
\hline Chen et al, 2008 (18262625) & 5/5 & Irradiation therapy as an adjuvant & \(44.18^{\text {a }}\) (20.5-54.0) & \(N R^{\text {b }}\) & 29 (15-33) & 0\% (0/5) & \(N \mathrm{R}^{\text {b }}\) \\
\hline \[
\begin{aligned}
& \hline \text { Leenstra et al, } \\
& 2007 \text { (17187939) } \\
& \hline
\end{aligned}
\] & 18/18 & Localized radiotherapy in 1.8-2.0 Gy fractions & 54.5 (48.6-61.2) \({ }^{\text {c }}\) & \(N \mathrm{R}^{\text {b }}\) & 19 (19-281) & 78\% (14/18) & 78\% (14/18) \\
\hline Lenzi et al, 2006 (16604374) & 5/5 & Conformational radiotherapy reaching 2 cm of border preoperative border & 45, (NR \({ }^{\text {b }}\) & 3 stable IVNs or complete recovery & \(84^{\text {b }}\) (36-240) & 20\% (1/5) & 40\% (2/5) \\
\hline Ashkan et al, 2000 (10964342) & 4/4 & Postoperative radiotherapy & \(55^{\text {a }}\), (NR \({ }^{\text {b }}\) ) & \(N \mathrm{R}^{\text {b }}\) & 6 (3-40) & 0\% (0/4) & 100\% (4/4) \\
\hline Sharma et al, 1999 (10844755) & 15/15 & Adjuvant radiotherapy over 6 wk & \(N \mathrm{~N}^{\text {b }}\) (40-60) & \(N \mathrm{R}^{\text {b }}\) & 36 (6-72) & 0\% (0/15) & 100\% (15/15) \\
\hline Fujimaki et al, 1997 (9120539) & 10/10 & Whole brain and/or local radiation & \(55.8{ }^{\text {a }}\) (50.0-60.0) & \(N \mathrm{R}^{\text {b }}\) & 72 (23-160) & 0\% (0/10) & 90\% (9/10) \\
\hline \[
\begin{aligned}
& \text { Louis et al, } 1990 \\
& (2086738)
\end{aligned}
\] & 4/4 & Irradiation therapy to tumor or to axis & 54 to tumor; 30 to axis (n/a) & All IVNs stable size & 40 (11-78) & 0\% (0/4) & 100\% \\
\hline
\end{tabular}

The Management of

\section*{RADIOTERAPIA}

Table 1
Stereotactic radiosurgery group includes studies summary
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Study Authors, Year (PMID) & \begin{tabular}{l}
No. \\
Tumors Subjects
\end{tabular} & \[
\begin{aligned}
& \text { SRS } \\
& \text { Type } \\
& \hline
\end{aligned}
\] & Mean Marginal Dose, Gy (Range) & Isodose Line, \% (Mean) & Pre- Mean Tumor Vol, \(\mathrm{cm}^{3}\) (Range) & \begin{tabular}{l}
Post- Mean Tumor \\
Vol, \(\mathrm{cm}^{3}\) (Range)
\end{tabular} & \begin{tabular}{l}
Median Follow-Up \\
Time, mo (Range)
\end{tabular} & All-cause Death Fraction & Local Control Fraction \\
\hline Karlsson et al,
\[
2012 \text { (23205795) }
\] & 35/35 & GKS & 14 (11-25) & \(N R^{\text {a }}\) & 12.0 (1-49) & \(N R^{\text {a }}\) & 30 (1.4-14.1) & 0\% \({ }^{\text {b }}\) & 83\% (4 cases) \\
\hline \[
\begin{aligned}
& \hline \text { Genc et al, } 2011 \\
& (21732073) \\
& \hline
\end{aligned}
\] & 18/18 & GKS & 16.7 (9-20) & 50 (50) & 12.18 (0.7-68.9) & 10.19 (0.01-68.9) & 31 (6-110) & 0\% & 93\% (13/14) \\
\hline Matsunaga et al, 2010 (20185873) & 8/7 & GKS & 13.9 (12-18) & 50-75 (55.6) & 3.86 (0.3-6.1) & \(N R^{\text {a }}\) & \(63.6^{c}(15-136)\) & 14\% (1/7) & 88\% (7/8) \\
\hline \[
\begin{gathered}
\hline \text { Kim et al, } 2007 \\
(17926332)
\end{gathered}
\] & 7/7 & GKS & 15.7 (15-18) & 50 (50) & 9.97 (5.3-16.3) & 4.36 (1.1-11.3) & 61 (26-77) & 0\% & 29\% (2/7) \\
\hline \[
\begin{aligned}
& \text { Yen et al, } 2007 \\
& (17639866) \\
& \hline
\end{aligned}
\] & 8/6 & GKS & 15.1 (9-20) & 30-60 (32.5 \({ }^{\text {d }}\) ) & 6.05 (1.4-19.8) & \(N R^{\text {a }}\) & 72 (6-123) & 17\% (1/6) & 100\% \\
\hline \[
\begin{aligned}
& \text { Martin et al, } 2003 \\
& (14505100) \\
& \hline
\end{aligned}
\] & 4/4 & GKS & 16.5 (16-18) & 89-110 (94.8) & 9.00 (4.0-23.0) & 3.22 (1-8.09) & 33 (3-54) & 0\% & 100\% \\
\hline Anderson et al, 2001 (11383724) & 4/4 & GKS & 17.0 (16-20) & \(N R^{\text {a }}\) & 7.02 (1.73-12.3) & \(N R^{\text {a }}\) & 13 (12-28) & 0\% & 100\% \\
\hline \begin{tabular}{l}
Cobery et al, 2001 \\
(11213974)
\end{tabular} & 4/4 & LINAC & 10.5 (9-13) & 30-50 (42.5) & 14.75 (6.5-10.5) & 3.75 (2.5-5.4) & 32.5 (12-99) & 0\% & 100\% \\
\hline
\end{tabular}

\section*{COMO LES VA}
 Multimodal Treatments and Managemen trategies Based on 30 Years' Experience

\section*{ABORDAJES QUIRÚRGICOS A LOS VENTRÍCULOS LATERALES}



\section*{PATOLOGÍA}

\section*{CASO \#1}

CASO \#2
- Sinaptofisina +++
- PGFA +
- Neurofilamentos -
- KI67 5\%

ATÍPICO


NEUROCITOMA CENTRAL

-Sinaptofisina +++
-PGFA +
-Neurofilamentos +
-KI67 2\%



Pediatric supratentorial intraventricular tumors

Daniel Y. Suh, M.D., Ph.D., and Timothy Mapstone, M.D.

\section*{Department of Neurosurgery, Emory University School of Medicine, and the Children's Healthcare o.} Atlanta-Egleston, Atlanta, Georgia

Arteriovenous malformations of the lateral ventricle

Cavernoma intraventricular del foramen de Monro: particularidades derivadas de su localización atípica
A. Meilán Martínez \({ }^{\mathrm{a}, *}\), P. Vega Valdés \({ }^{\mathrm{a}}\), E. Santamarta Liébana \({ }^{\mathrm{a}}\) y J.C. Rial Basalo \({ }^{\text {b }}\)
aservicio de Radiodiagnostico, Hospital Universitario Central de Asturias, Oviedo, España
Servicio de Neurocirusia, Hospital Universitario Central de Asturias, oviedo, España
Histology and Molecular Aspects of Central Neurocytoma


Surgical resection of metastatic intraventricular tumors
Giacomo G. Vecil, MD, Frederick F. Lang, MD*
 Plat

\section*{The Management of Residual or Recurrent Central Neurocytoma}

Prognostic value of the MIB-1 labeli index for central neurocytomas
and review of the literatur

Operative techniques for tumors in the thi ventricle


Central Neurocytoma: Long-term Outcomes of Multimodal Treatments and Management Strategies Based on 30 Years' Experience in a Single Institute
Natural history of colloid cysts of the third ventricle


Clinical Outcome and Quality of Life After Treatment of Patients with Central Neurocytoma
\(\qquad\)

Patterns of Hydrocephalus Caused by Congenital Toxoplasma gondii Infection Associate With Parasite Genetics

INRAVENTRICULAR MENINGIOMAS: A
REVIEW OF 16 CASES WITH REFERENCE
TO THE LITRATURE
 Report 2013 : Tumors s of the pineal resion
Incidence of pineal tumours. A review of the literature Incidence des tumeurs pinéales. Revue de la la litérature C. Mottolese'; A. Szathmari, P-A. Beriat

The Management of Central Neurocytoma Radiotherapy


\section*{Imaging of Central Neurocytomas}

Daniel Donoho, MD*, Gabriel Zada, MD

Clinical study

Choroid plexus tumor epidemiology and outcomes: implications for surgical and radiotherapeutic management

Donald M. Cannon - Pranshu Mohindra -
Vinai Gondi - Tim J. Kruser \(\cdot\) Kevin R. Kozak
(1) Cosostara


Atlas of
Craniopharyngioma```

